short appendices devoted to standard elementary theorems, a bibliography with seventy-two entries, and a useful index. The chapter headings follow:

Chapter I. Complex Symmetric, Antisymmetric and Orthogonal Matrices
Chapter II. Singular Bundles of Matrices
Chapter III. Matrices with Nonnegative Elements
Chapter IV. Applications of the Theory of Matrices to the Study of Systems of Linear Differential Equations
Chapter V. The Routh-Hurwitz Problem and Related Questions.
C. B. T.

44[K].-Joseph Berkson, "Tables for use in estimating the normal distribution by normit analysis," Biometrika, v. 44, 1957, p. 411-435.
In a quantal response assay a number of independent tests are made at each of a number of dose levels, and the result of each test is graded as "success" or "failure". If the probability of "success" at dose metameter value x is assumed to follow the "normal" law

$$
P(x)=1 / \sqrt{2 \pi} \int_{-\infty}^{(x-\mu) / \sigma} e^{-t^{2} / 2} d t
$$

the method of "normit analysis" is proposed by Berkson as a replacement for the familiar (iterative) method of "probit analysis" for estimating the parameters μ and σ.

Suppose that the dose metameter values used are x_{1}, \cdots, x_{k}, that n_{i} tests are made at level x_{i}, and that r_{i} of these tests result in success. Let

$$
\begin{aligned}
p_{i} & =\left\{\begin{array}{l}
1 /\left(2 n_{i}\right) \text { if } r_{i}=0 \\
r_{i} / n_{i} \text { if } 0<r_{i}<n_{i} \\
1-1 /\left(2 n_{i}\right) \text { if } r_{i}=n_{i}
\end{array}\right. \\
X_{i} & =X\left(p_{i}\right), \text { where } X(p) \text { is defined by the relation } \\
p & =(1 / \sqrt{2 \pi}) \int_{-\infty}^{X(p)} e^{-u^{2} / 2} d u, \\
Z_{i} & =(1 / \sqrt{2 \pi}) e^{-X_{i}^{2} / 2} \\
w_{i} & =Z_{i}^{2} / p_{i}\left(1-p_{i}\right)
\end{aligned}
$$

The method consists of a weighted regression analysis, which is facilitated by tables which give for each p_{i} the corresponding values of w_{i} and $w_{i} X_{i}$.

In table $2 w_{i}$ and $w_{i} X_{i}$ are given to $6 D$ for $p=0.001(0.001) 0.500$. (For $p>\frac{1}{2}$, $w(p)=w(1-p)$ and $w X(p)=-w X(1-p)$.) For moderate n_{i} interpolation may be avoided by use of Table 1, which gives w_{i} and $w_{i} X_{i}$, also to $6 D$, for all combinations of r_{i} and n_{i} for which $1<n_{i} \leqq 50$ and $0 \leqq r_{i} \leqq n / 2$. (For $r>n / 2$, $w(r, n)=w(n-r, n)$ and $w X(r, n)=-w X(n-r, n)$.$) It is stated that the$ entries in both tables are correct to within ± 1 in the final digit.

Paul Meier
University of Chicago
Chicago, Illinois

